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ABSTRACT

An innovative hyperbolic preconditioning technique is developed

for the numerical solution of the Helmholtz equation which governs acous-

tic propagation in ducts. Two pseudo-time parameters are used to pro-

duce an explicit iterative finite difference scheme. This scheme eliminates

the large matrix storage requirements normally associated with numeri-

cal solutions to the Helmholtz equation. The solution procedure is very

fast when compared to other transient and steady methods. Optimization

and an error analysis of the preconditioning factors are present. For vali-

dation, the method is applied to sound propagation in a 2D semi-infinite

hard wall duct.

addresses many of the issues associated with the acceleration to a steady

state solution.

In this paper, new preconditioning factors are introduced to speed

the convergence of the transient finite difference scheme in solving the

Helmholtz equation. Solution times are reduced by an order of magni-

tude over the previous approach. For validation, the method is applied to

plane wave sound propagation in a 2D semi-infinite hard wall duct. The

paper contains a description of the problem, the brief development of the

preconditioning technique, the introduction of the acceleration param-

eters, the finite difference formulation with a stability analysis, and sev-

eral numerical examples with error estimates.

INTRODUCTION

The Helmholtz equation plays an important role in the study of

acoustics as well as electromagnetic propagation and quantum mechan-

ics. Unfortunately, large matrix storage requirements are generally asso-

ciated with numerical solutions of the Helmholtz equation. To reduce

these requirements, Bayless, Goldstein, and Turkel (1982) developed an

iterative approach to solve the associated matrix equation. More recently,

Baumeister and Kreider (1996) developed a preconditioned transient fi-

nite difference scheme to solve the Helmholtz equation as well as the

more general linearized potential flow equations. Their introduction of

time dependence into the Helmholtz equation eliminates the large ma-

trix storage requirements of the algorithm. This paper is concerned with

the development of a more efficient preconditioning method to acceler-

ate convergence for the Helmholtz equation.

A standard technique of solving steady state partial differential equa-

tions is to march their time dependent form until the steady state is reached.

When the transient is not of interest, acceleration parameters can be

employed to speed the convergence. This type of differential manipula-

tion is often associated with preconditioning of both time dependent

(Turkel, Fiterman and van Leer, 1993) and time independent (Turkel and

Arnone, 1993) partial differential equations. Generally, acceleration

parameters destroy the time accuracy of the solution. Turkel (1982, pp. 31)

NOMENCLATURE

Co# dimensional speed of sound

C dimensionless speed of sound, Eq. (2)

D # dimensional duct height

D duct height, D#/D #, D = 1

e k total L l convergence error at step k, Eq. (16)

ekk e k error per axial wavelength, Eq. (17)

f0 dimensional frequency

f dimensionless frequency, f_D#/Co #, Eq. (2)

i _-

L length, L#/D #

IMI absolute value of Mach number, Eq. (12)
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n unitoutward normal

t dimensionless time, t_t #

tT dimensionless total calculation time

At time step

x dimensionless axial coordinate, x#/D #

Ax axial grid spacing

y dimensionless transverse coordinate, y#/D #

Ay transverse grid spacing

acceleration parameter

13 acceleration parameter

t_' transient potential, _#/Co#D # Eq. (1)

transient potential in frequency domain, Eq. (6)

_g Fourier transformed potential, Eq. (3)

to dimensionless frequency, 2_rf

Subscripts

i axial index, see Fig. 1

j transverse index, see Fig. 1

o ambient or reference condition

Superscript

# dimensional quantity

k time step

- complex conjugate

PROBLEM STATEMENT

The problem under consideration here is the development of pre-

conditioning acceleration factors to obtain the solution to the Helmholtz

equation. This method will have application to the general study of sound

propagation in ducts. The goal of the paper is to develop a stable, explicit

finite difference scheme that significantly reduces the computation time

required to solve the Helmholtz equation with a monochromatic noise

source. The formulation is applied to a semi-infinite duct with a planar

source at the duct inlet, as shown in Fig. 1.

HELMHOLTZ EQUATION AND BOUNDARY CONDITION

The governing differential equation for studying wave propagation

can be formulated in terms of a potential as

1 , , , f2_ ,
C2 _tt = _xx +_yy or _t = _xx +t_yy (1)

where 0'(x,y,t) is the dimensionless potential and subscripts indicate par-

tial differentiation with respect to subscripted variables. The conventional

normalization factors used to develop these nondimensional equations

are given in the NOMENCLATURE. The dimensionless frequency f is
defined as

f#D # 1

f= Co# C (2)

where the superscript # indicates a dimensional quantity.

There are several ways to develop a frequency domain formulation

for Eq. (1). The Fourier Transform can be applied if the potential has a

muhi-fmquency content. In the monochromatic case, this is equivalent

to assuming that

O'(x, y, t) = _(x, y)e -i°_t_ = _(x, y)e -i2nt (3)

which transforms Eq. (1) to the Helmholtz equation

0 = Igxx + Igyy + O)21g (4)

where co = 2 x f.

At the entrance of the duct, x = 0, the source is assumed to have the

form

t)' = e -i2m or q' = 1 (5)

Also, the duct is assumed to be semi-infinite in length so that waves

propagate only to the right.

PRECONDITIONED HELMHOL'I-Z EQUATION

The Helmhoitz equation is preconditioned by assuming that

¢'(x,y,t) = ¢(x,y,t)e -it°#t# = ¢(x,y,t)e -i2ra (6)

See Baumeister and Kreider (1996) for further discussion. This differs

from the classical monochromatic transformation in that the amplitude

(no prime) is no longer independent of time. Under this transformation,

Eq. (1) becomes

f20n - 2if°x_t = 0xx + 0yy + t-02¢ (7)
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The only difference between the Helmholtz Eqs. (4) and (7) is

the presence of the time derivative terms on the left hand side. Physi-

cally, the time dependence in #(x,y,t) is caused by assuming that the duct

is quiescent at time 0, and that the source is turned on at that instant. A

series of numerical calculations reported by Baumeister and Kreider

(1996) show that

lim _(x, y, t) = _/(x, y) (8)
t--_oo

when the f2t_t t is dropped (parabolic approximation).

ACCELERATION PARAMETERS

To speed the convergence to the steady state solution _(x,y), accel-

eration parameters _ and _ are added to Eq. (7) as follows:

Off2Ott - _2if0x_t = _Pxx + ¢Pyy + _2t_ (9)

This is a generalization of the preconditioning done in Baumeister and

Kreider (1996), which dealt with the t_ = 0, _ = 1 case (parabolic

approximation). After the formulation of the difference equations,

the acceleration of convergence is tested over a range of acceleration

parameters.

FINITE DIFFERENCE EQUATIONS

The potential at the spatial grid points (xi,Yj) (Fig. 1) is determined
by iterating the initial condition over time steps tk = kAt. Away from the

duct boundaries, each partial derivative in Eq. (9) can be expressed using

central differences, which yields

0=,/:(_i,j _t 2 At ) t_i'j _t 2 Ax 2 Ay 2

+ +ik+l J'/]_ + +ik-1J (A---_/'

(10)

otf _ic0f /+ +ik'fl At 2 At )

where Ax, Ay, and At are the space and time mesh spacings respectively,

and _ij = _P(xi,Yj,tk)' Equation (10) is an explicit two step scheme. The

field values at tO and t-I are assumed zero because the initial field is

quiescent.

The expressions for the difference equations at the hard wall bound-

aries (y=0 & y = 1) employ the boundary condition

V+ * n = 0 (11)

where n is the unit outward normal. Baumeister (1980) gives precise

details for generating the difference equations on the boundaries.

STABILITY

Avon Neumann stability analysis is used to determine the condi-

tions on At, Ax, and Ay required for conditional stability as a function of

the acceleration parameters ct and _. Conditional stability means that the

amplification factor, which describes how errors propagate from one time

step to the next, has magnitude one. Thus, when At, Ax, and Ay satisfy

the stability criteria, errors are not magnified or diminished in magni-

tude. This is a desirable property, since the numerical formulation can-

not distinguish between a roundoff error and a small physical oscillation.

For the case ct = 0 and _ = 1, treated by Baumeister and Kreider

(1996) and herein denoted the parabolic preconditioner (because the sec-

ond order time derivative does not appear), the stability analysis indi-

cates that the method is conditionally stable, subject to the condition

(conservative estimate of Mach number effects)

1

 t 2irl 2/l/2]M,  12,+ -Tt+fA x

In a typical application, f is set by the operating conditions in the duct.

The grid spacing parameters Ax and Ay are set to resolve the estimated

spatial harmonic variation of the potential field and At is chosen to sat-

isfy Eq. (12). Of course, the stability analysis does not take into account

boundary conditions. For stability, gradient boundary conditions gener-

ally require the use of smaller At than predicted by Eq. (12).

For the case et # 0 and _ # 0, herein denoted the mixed preconditioner,

the stability analysis indicates that the method is conditionally stable,

subject to the two conditions

o) .3,
and

I l 12tlf2 _/ff2

At < co21 Co2 + 1 1 (14)
1 + +

Ax 2 Ay 2 4 _-2 Ay 2 4

Generally, the second squared term on the right side of (14) is much

smaller than the first term. For a typical scenario (Ax = 0.05, Ay = 0. l,

f= l, at = 0.95, _ = 1), At < 0.071 from Eq. (13) and At < 0.044 from
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Eq.(14).Consequently, the stability criteria yield At<.044 in this mixed

case example.

NUMERICAL EXAMPLES

Let a plane wave propagate from the left into a semi infinite quies-

cent duct. The potential field is to be computed in the duct for 0 < x < 1.

Examples l to 3 illustrate the effects of changing a and _ with dimen-

sionless frequency f = 1 on the grid specified by Ax = 0.05 and Ay = 0.5.

Example 4 shows the effect of increasing the frequency, by using f = 5.

Because boundary conditions can introduce instabilities (Baumeister,

1982 and Cabelli, 1982) into otherwise stable finite difference schemes,

it is important to test the iteration scheme for convergence in the absence

of an exit boundary condition. Therefore, in these examples, the compu-

tational boundary is set at x = 50, far enough away from the true bound-

ary x = 1 that any artifacts arising from the exit boundary condition do
not affect the solution in 0 < x < 1.

The numerical results for plane wave propagation are compared to

the exact results of the steady state solution, given by

_(x) = e it°x (15)

In the region 0 < x < 1, the L 1 norm of the global error e k between the

exact solution _ and the numerical solution ¢_kat time step k is used as a

meas-ure of the convergence. The error is defined as

1 1 k

ek = _£f; _(¢ - ¢/)(_bk - w)dY dx- (16)

Example 1. Parabolic Preconditioning----or = 0, _l= 1, f = 1.

The choice of ct = 0 eliminates the second order time derivative.

The time increment At is set at 0.007. The maximum stable value, from

Eq. (12), is 0.00797. The numerical and exact solutions are compared in

Fig. 2(a) (real and imaginary parts of the potential) and in Fig. 2(b) (mag-

nitude of the potential) after 1000 iterations. The numerical solution shows

excellent agreement with the analytic solution. The error as a function of

the iteration number is shown in Fig. 3. After 1000 iterations, el000 =
0.0171. This residual error is the result of the usual round off and trunca-

tion errors associated with finite differences.

Example 2. Mixed Preconditioning---t_ = 0.95, I_= 1, f = 1.

The time increment At is set at 0.04. The maximum stable value,

from Eq. (14), is 0.049. The error as a function of the iteration number is

shown in Fig. 4. After 100 iterations, the error is el00 = 0.0136201. It is

important to note that the number of iterations required for convergence

drops by an order of magnitude with mixed preconditioning as com-

pared to parabolic preconditioning (shown by dashed line in Fig. 4).

Therefore, a calculation which took I minute with the parabolic approach

would now take only 6 seconds with the Hyperbolic Approach. Again,

the numerical solution shows excellent agreement with the analytic so-

lution after 100 iterations. The plots of the magnitude and the real and

imaginary parts of the potential are virtually identical to Figs. 2(a) and

(b), and hence are omitted. Clearly, mixed preconditioning is superior to

parabolic preconditioning because the number of iterations required for

convergence is an order of magnitude lower.

Example 3. Mixed Preconditioning---or = 16, 13= 4.25, f = 1.

The time increment At is set at 0.2. The maximum stable value,

from Eq. (14), is 0.201. The error as a function of the number of itera-

tions is shown in Fig. 5. After 500 iterations, el00 = 0.0136225. The

results here are nearly identical to those shown in Fig. 4. The numerical

solution again shows excellent agreement with the analytic solution. As

before, the plots of magnitude and phase are omitted because they are

virtually identical to Figs. 2(a) and (b). In this example, with the intro-

duction of the large acceleration parameters, the time variable loses its

physical meaning. In effect, the large ct reduces the effective speed of

propagation C in Eq. (1) which then requires a longer time for the tran-

sient t_ to approximate the steady state solution _ as required by Eq. (8).

However, the critical parameter is the number of iterations required to

obtain a solution. The convergence rates for examples 2 and 3 are

nearly identical.

Example 4. Mixed Preconditioning---or = 0.95, 13= 1, f = 5.

To resolve the shorter wavelengths associated with the higher fre-

quency f = 5, Ax is reduced by a factor of 5 to 0.01. The time increment

At is set at 0.04. The maximum stable value, from Eq. (14), is 0.0497.

The numerical and exact solutions are compared in Fig. 6(a) (real and

imaginary parts of the potential) and in Fig. 6(b) (magnitude of the po-

tential) after 1000 iterations. The numerical solution again shows excel-

lent agreement with the analytic solution. The error as a function of

iteration number is shown in Fig. 7. After 1000 iterations, el0oo = 0.0659.

This error is about 5 times higher than that for the f = 1 case. Since the

two solution plots show roughly the same degree of accuracy, the change

in total global error is apparently caused by the fact that there are 5 times

as many grid points in the f = 5 case. The number of grid points is pro-

portional to the number of axial wavelengths or frequency. So dividing

by the frequency gives a rough measure of the local error at each grid

point, which is, in this case,

e_ = e----Lk= 0.0132 (17)
f

It should be noted that acceptable solutions can be obtained using fewer

iterations than the asymptotic values indicated by Figs. 7 to 9.

Optimal Acceleration Parameters

Numerous numerical calculations were performed to determine the

optimal choice of ct and [3 to reduce the number of iterations to conver-

gence. In these calculations _ was set to l and I_ varied. Other choices

of ct yield approximately the same rate of convergence. For

convergence with minimum iterations, the time increment At and _i were
set as follows:

Atop t = / off2
1 1 0) 2

_-+ Ay 2 4

(18)
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_opt=_0_+_2At2pt (19)

Forct=1,Ax=0.05,Ay=0.5andf=1,theoptimaltimeincrement
Atopt,from(18),is0.0503.Theoptimal_optiscalculatedtobe1.01244
fromEq.(19).Theerrorasafunctionofthenumberofiterationsis
showninFig.8.After100iterations,el0o= 0.0137. The converged error

is nearly identical to the ct = 0.95 and 13= 1.0 nonoptimal case shown in

Fig. 4. However, the optimal case reaches this error with nearly one order

of magnitude in fewer iterations. Also, the error curve is seen to be much

smoother. Therefore, a calculation which took l minute with the para-

bolic approach would now take only 1.8 seconds with the Hyperbolic

Approach. The numerical solution again shows excellent agreement with

the analytic solution. As before, the plots of magnitude and phase are

omitted because they are virtually identical to Figs. 2(a) and (b).

The number of iterations to obtain the final solution can be reduced

even further by increasing the spatial distance between nodes. For a = l,

Ax = 0.0833 (66% increase), Ay = 0.5 and f = 1, the optimal time incre-

ment Atop t from (18) is 0.0851. The optimal _opt is calculated to be
1.03614 from Eq. (19) with a 1.001 factor of safety. The error as a func-

tion of the number of iterations is shown in Fig. 9. After 100 iterations,

el00 = 0.0398 which is approximately 3 times larger than the previous

case shown in Fig. 8 with Ax = 0.05. However, this error is still accept-

able for accurate solutions. In fact, after 16 iterations, the error level has

dropped to 0.04732 which gives excellent results for phase and magni-

tude plots of the potential as shown in Figs. 10(a) and (b).

The speed at which the transient solution approaches the steady

state Helmholtz solution is now discussed.

Speed of Pro_Dauation
For the conventional wave equation, Pearson (! 953) has shown that

the total time tT required for the steady state solution (15) to become

established in the duct is equal to the time for a plane wave propagating

at the speed of sound to reach the end of the duct. Similarly, with the

preconditioned Helmholtz Eq. (9) and a = 1, the steady state solution

_g(x)to the Helmhoitz equation propagates outward at the dimensionless

speed C, where from Eq. (2)

c=--1 Co (20)
f f#D #

For a frequency f = 1, Fig. 1 l(a) shows the developing wave front

(real and imaginary parts) as a function of the iteration number while

Fig. 1l(b) shows the magnitude of the potential. For this case,

L
t =--= Lf = 1,1 = 1 (21)

C

As seen in Fig. 11, the solution moves to the right with a distinct front at

the speed C = 1. The front arrives at the exit at t = 1.0.

Similarly, for a frequency f = 5, Fig. 12(a) shows the developing

wave front (real and imaginary parts) as a function of the iteration num-

ber while Fig. 12(b) shows the magnitude of the potential. For this case,

L
t =-- = Lf = 1 e5 = 5 (22)

C

As seen in Fig. 12, the solution moves to the right with a distinct front at

the speed C = 0.2. The front arrives at the exit at t -- 5.0.

The number of axial grid points and the number of iterations re-

quired for convergence are both directly proportional to frequency. A

comparison of Figs. 11 and 12 shows the factor of 5 difference in the

number of required iterations when the frequency is increased by 5. For

increased frequency, the solution moves more slowly to the right. Gener-

ally, the solution time should be increased by 30 percent over that pre-

dicted by Eqs. (21) or (22) for more accurate results.

SOLUTION METHODS

With the approach developed in this paper, three different solution

techniques are now available to solve the Helmholtz equation, as shown

in Fig. 13. The Fourier transform approach in the right column, with

finite differences or finite elements, results in a matrix equation. Because

this matrix is not positive definite, matrix elimination solutions are gen-

erally employed, requiring extensive computer memory for high frequency

propagation. The transient solution to the hyperbolic wave equation,

shown in the left column, eliminates matrix storage requirements by

iterating finite difference approximations to the steady state solution.

The third option, preconditioning using the mixed formulation (a _ 0,

[3 ;e 0), is shown in the center column. This approach eliminates matrix

storage requirements, and has less stringent stability conditions than the

transient solution, so it converges in fewer iterations.

CONCLUSION

Accelerated numerical preconditioning of the Helmhoitz equation

has been developed. The field is iterated in time from an initial value of

0 to attain the steady state solution. The method eliminates the large

matrix storage requirements of steady state finite difference or finite el-

ement techniques in the frequency domain. In each example provided,

the numerical solution quickly and accurately converges to the exact

steady state solution. The hyperbolic preconditioning developed in this

paper has more than an order of magnitude faster convergence than the

previously developed parabolic preconditioning approach.
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Figure 1 .--Structured finite difference-time dependent (FD-TD)

mesh for semi-infinite rectangular duct.
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Figure 13.--Alternate finite difference/element methods in solving wave equations.
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